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THE EXISTENCE OF THE SOLUTION OF ELLIPTIC

SYSTEM APPLYING TWO CRITICAL POINT

THEOREM

Hyewon Nam*

Abstract. This paper deals with the study of solutions for the
elliptic system with jumping nonlineartity and growth nonlinearity
and Dirichlet boundary condition. We apply the two critical point
theorem when proving the existence of nontrivial solutions for the
elliptic system. We define the energy functional associated to the
elliptic system and prove that the functional has two critical values.

1. Introduction

In this paper, we consider the existence of nontrivial solutions to the
elliptic system −△u = au+ bv + (u+)p1 − (u−)q1 + f1(x, u, v) in Ω,

△v = bu+ cv + (v+)p2 − η(v−) + f2(x, u, v) in Ω,
u = v = 0 on ∂Ω.

(1.1)

where u+ = max{0, u(x)}, u− = −min{0, u(x)} and Ω ⊂ RN is a
smooth bounded domain with N ≥ 2.

The nonlinearities will be assumed to be both superlinear and sub-
critical, that is, 1 < q1 < p1 < 2∗ − 1 and 1 < p2 < 2∗ − 1, where
2∗ = 2N

N−2 if N ≥ 3 and 2∗ = ∞ if N = 2.

There exists a function F : Ω̄ × R2 → R such that ∂F
∂u = f1 and

∂F
∂v = f2 without loss of generality, and we set

F (x, u, v) =

∫ (u,v)

(0,0)
f1(x, u, v)du+ f2(x, u, v)dv.

Then F ∈ C1(Ω̄×R2, R).
We consider the following assumptions.
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(F1) There exist M > 0 and α > 2 such that

0 < αF (x, u, v) ≤ uFu(x, u, v) + vFv(x, u, v)

for all (x, u, v) ∈ Ω̄×R2 with u2 + v2 > M2.
(F2) There exist constants a1 > 0 and a2 > 0 such that

|Fu(x, u, v)|+ |Fv(x, u, v)| ≤ a1 + a2(|u|r + |v|r)

where 1 ≤ r < (N+2)
(N−2) if N > 2 and 1 ≤ r <∞ if N = 2.

(F3) For (u, 0) → (0, 0),

F (x, u, 0)

u2
→ 0.

(F4) For every u ∈ H,

F (u, 0) ≥ 0.

Remark 1.1. The condition (F1) shows that there exist constants
b1 > 0 and b2 such that (cf. [1])

F (x, u, v) ≥ b1(|u|α + |v|α)− b2.

The results of our study are as follows.

Theorem 1.2. Assume F satisfies (F1), (F2), (F3) and (F4) with
α = r + 1. If a, b, and c are positive with a < λ1 and c + η < λ1 then
system (1.1) has at least one nontrivial solutions.

Presently there are many significant results with respect to the non-
linear elliptic equation and system with Dirichlet boundary condition
[2, 6, 8, 9]. Many authors also investigated the nonlinear elliptic equa-
tion and system with jumping nonlinearity and subcritical growth non-
linearity and Dirichlet boundary condition [4, 5, 7]. We are interested
in the two critical point theorem as a way of solving the elliptic system.

In this paper we prove the existence of two nontrivial solutions for
the elliptic system with jumping nonlinearity and growth nonlinearity
and Dirichlet boundary condition. In Section 2, we use a variational
approach to look for critical points of the functional I on a Hilbert
space H. In Section 3, we prove the Palais Smale star condition for the
two critical point theorem. And we prove the Lemmas in order to apply
the two critical point theorem, so we prove Theorem 1.2.
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2. Preliminaries

This section introduces the critical point theorem used to prove the
existence of the nontrivial solutions for the elliptic system.

For any subspace Y of a Hilbert space H, consider

Bρ(Y ) := {u ∈ Y | ∥u∥ ≤ ρ}
and denote by ∂Bρ(Y ) the boundary of Bρ(Y ) relative to Y . Further-
more define, for any e ∈ H,

QR(Y, e) := {u+ ae ∈ Y ⊕ [e] | u ∈ Y, a ≥ 0, ∥u+ ad∥ ≤ R}
and denote by ∂QR(Y, e) its boundary relative to Y ⊕ [e].

Let V be a C2 complete connected Finsler manifold. Suppose H =
H1 ⊕H2 and let Hn = H1n ⊕H2n be a sequence of closed subspaces of
H such that

Hin ⊂ Hi, 1 ≤ dimHin < +∞ for each i = 1, 2 and n ∈ N.

Moreover suppose that there exist e1 ∈ ∩∞
n=1H1n, and e2 ∈ ∩∞

n=1H2n,
with ∥e1∥ = ∥e2∥ = 1.

We recall the two critical points theorem in [3].

Theorem 2.1. ([3] Theorem 2.1) Suppose that f satisfies the (PS)∗

condition with respect to Hn. In addition assume that there exist ρ, R,
such that 0 < ρ < R and

sup
∂QR(H2,e1)×V

f < inf
∂Bρ(H1)×V

f,

sup
QR(H2,e1)×V

f < +∞, and inf
Bρ(H1)×V

f < −∞.

Then there exist at least 2 critical levels of f . Moreover the critical
levels satisfy the following inequalities

inf
Bρ(H1)×V

f ≤ c1 ≤ sup
∂QR(H2,e1)×V

f < inf
∂Bρ(H1)×V

f ≤ c2 ≤ sup
QR(H2,e1)×V

f,

and exist at least 2 + 2 cuplength(V) critical points of f .

3. Main result

We prove the Palais Smale star condition for the two critical point
theorem. And we prove the Lemmas in order to apply the two critical
point theorem, so we prove the existence of nontrivial solutions by using
two critical points theorem.
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3.1. The variational structure

Throughout the paper, we will denote by λk the eigenvalues and by
ek the corresponding eigenfunctions, suitably normalized with respect
to L2(Ω) inner product, of the eigenvalue problem

−∆u = λu in Ω

with Dirichlet boundary condition, where each eigenvalue λk is respected
as often as its multiplicity. We recall that

0 < λ1 < λ2 ≤ λ3 ≤ · · · , λi → +∞

and that e1 > 0 for all x ∈ Ω.

Then H = span{ei|i ∈ N}, where H = W 1,p
0 (Ω), the usual Sobolev

space with the norm ∥u∥2 =
∫
Ω |∇u|2dx.

Let e1i = (ei, 0) and e
2
i = (0, ei). We define Hj = span{eji |i ∈ N} for

j = 1, 2 and E = H1 ⊕H2 with the norm ∥(u, v)∥2E = ∥u∥2 + ∥v∥2.
We define the energy functional associated to (1.1) as

I(u, v) =
1

2

∫
Ω

(
|∇u|2 − |∇v|2

)
dx− 1

2

∫
Ω

(
au2 + 2buv + cv2

)
dx

−
∫
Ω

(
1

p1 + 1
(u+)p1+1 +

1

p2 + 1
(v+)p2+1

)
dx(3.1)

+

∫
Ω

(
1

q1 + 1
(u−)q1+1 +

η

2
(v−)2

)
dx−

∫
Ω
F (x, u, v)dx.

It is easy to see that I ∈ C1(E,R) and thus it makes sense to look for
solutions to (1.1) in weak sense as critical points for I i.e., (u, v) ∈ E
such that I ′(u, v) = 0, where

I ′(u, v) · (ϕ, ψ) =

∫
Ω
(∇u∇ϕ−∇v∇ψ) dx

−
∫
Ω
(auϕ+ bvϕ+ buψ + cvψ) dx

−
∫
Ω

(
(u+)p1ϕ+ (v+)p2ψ

)
dx

+

∫
Ω

(
(u−)q1ϕ+ η(v−)ψ

)
dx

−
∫
Ω
(f1(x, u, v)ϕ+ f2(x, u, v)ψ) dx.
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3.2. The Palais Smale star condition

In this section we will prove the (PS)∗c condition which was required
for the application of Theorem 2.1. In the following, we consider the
following sequence of subspaces of E :

En = span{eji |i = 1, · · · , n and j = 1, 2}, for n ≥ 1.

Lemma 3.1. Assume F satisfies (F1) and (F2) with α = r + 1. If
a < λ1 and c+ 1 < λ1, then any (PS)∗c sequence is bounded.

Proof. Let {(un, vn)} ⊂ E be a sequence such that

(un, vn) ∈ En, I(un, vn) → C, I ′(un, vn) → 0 as n→ ∞.

To show the contradiction, we assume that {(un, vn)} is not bounded
i.e., ∥(un, vn)∥E → ∞.

In the following we denote different constants by C1, C2 and etc.

C1 +
1

2
o(1) (∥un∥+ ∥vn∥)

≥ I(un, vn)−
1

2
I ′(un, vn) · (un, vn)

=

∫
Ω

(
p1 − 1

2(p1 + 1)
(un

+)p1+1 +
p2 − 1

2(p2 + 1)
(vn

+)p2+1

)
dx

−
∫
Ω

(
q1 − 1

2(q1 + 1)
(un

−)q1+1

)
dx

+
1

2

∫
Ω
(unf1 + vnf2)dx−

∫
Ω
F (x, un, vn)dx(3.2)

≥ q1 − 1

2(q1 + 1)

∫
Ω

(
(un

+)p1+1 − (un
−)q1+1

)
dx

+
p2 − 1

2(p2 + 1)

∫
Ω

(
(vn

+)p2+1
)
dx

+
1

2

∫
Ω
(unf1 + vnf2)dx−

∫
Ω
F (x, un, vn)dx.

(F1) and Remark imply that
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1

2

∫
Ω
(unf1 + vnf2)dx −

∫
Ω
F (x, un, vn)dx

≥
(α
2
− 1

)∫
Ω
F (x, un, vn)dx

≥
(α
2
− 1

)
b1

∫
Ω
(|un|α + |vn|α)dx− C2(3.3)

≥
(α
2
− 1

)
b1(∥un∥αLα + ∥vn∥αLα)− C2.

Combining (3.2), (3.3), we obtain

C1 +
1

2
o(1) (∥un∥+ ∥vn∥)

≥ q1 − 1

2(q1 + 1)

∫
Ω

(
(un

+)p1+1 − (un
−)q1+1

)
dx

+
p2 − 1

2(p2 + 1)

∫
Ω

(
(vn

+)p2+1
)
dx(3.4)

+
(α
2
− 1

)
b1(∥un∥αLα + ∥vn∥αLα)− C2.

Since α > 2 and b1 > 0, we get

C3 +
1

2
o(1) (∥un∥+ ∥vn∥) ≥ q1 − 1

2(q1 + 1)

∫
Ω

(
(un

+)p1+1 − (un
−)q1+1

)
dx

+
p2 − 1

2(p2 + 1)

∫
Ω

(
(vn

+)p2+1−
)
dx.

By observing that each term in the expression above is nonnegative, we
conclude that the estimate from above holds for each of them, and then

1

∥(un, vn)∥E

∫
Ω

(
(un

+)p1+1 − (un
−)q1+1

)
dx→ 0,(3.5)

1

∥(un, vn)∥E

∫
Ω
(vn

+)p2+1dx→ 0.(3.6)

On the other hand
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o(1)∥un∥ ≥ I ′(un, vn) · (un, 0)

= ∥un∥2 −
∫
Ω
(aun

2 + bunvn)dx(3.7)

−
∫
Ω

(
(un

+)p1+1 − (un
−)q1+1

)
dx−

∫
Ω
unf1dx,

−o(1)∥vn∥ ≤ I ′(un, vn) · (0, vn)

= −∥vn∥2 −
∫
Ω
(bunvn + cvn

2)dx(3.8)

−
∫
Ω

(
(vn

+)p2+1 − η(vn
−)2

)
dx−

∫
Ω
vnf2dx.

Combining (3.7) and (3.8),

∥un∥2 + ∥vn∥2 ≤ o(1)(∥un∥+ ∥vn∥) +
∫
Ω
(aun

2 − cvn
2)dx

+

∫
Ω

(
(un

+)p1+1 − (un
−)q1+1

)
dx

−
∫
Ω

(
(vn

+)p2+1 − η(vn
−)2

)
dx(3.9)

+

∫
Ω
(unf1 − vnf2)dx.

By the continuous embedding of H in L2, we get∫
Ω
(u−)2dx ≤

∫
Ω
u2dx ≤ 1

λ1
∥u∥2

for any u ∈ H. Hence∫
Ω
(aun

2 − cvn
2)dx ≤

∫
Ω
(aun

2 + cvn
2)dx

≤ a

λ1
∥un∥2 +

c

λ1
∥vn∥2.(3.10)

Using (F2), we obtain∫
Ω
(unf1 − vnf2)dx ≤ C4

∫
Ω
(|un|r+1 + |vn|r+1)dx+ C5.(3.11)

Apply (3.10) and (3.11) to (3.9), and we obtain the inequlity
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∥un∥2 + ∥vn∥2 ≤ o(1)(∥un∥+ ∥vn∥) +
a

λ1
∥un∥2 +

c+ η

λ1
∥vn∥2

+

∫
Ω

(
(un

+)p1+1 − (un
−)q1+1

)
dx(3.12)

−
∫
Ω
(vn

+)p2+1dx+ C4

∫
Ω
(|un|r+1 + |vn|r+1)dx+ C5.

(3.12) implies that if a < λ1 and c+ η < λ1 then

∥un∥2 + ∥vn∥2 ≤ o(1)C6(∥un∥+ ∥vn∥)

+ C6

∫
Ω

(
(un

+)p1+1 − (un
−)q1+1

)
dx(3.13)

− C6

∫
Ω
(vn

+)p2+1dx+ C7

∫
Ω
(|un|r+1 + |vn|r+1)dx+ C8.

Combining (3.4), (3.13) and using α = r + 1, one infers that

∥un∥2 + ∥vn∥2 ≤ o(1)C9(∥un∥+ ∥vn∥) + C10

+ C11

∫
Ω

(
(un

+)p1+1 − (un
−)q1+1

)
dx

+ C12

∫
Ω
(vn

+)p2+1dx.

We get

∥(un, vn)∥E ≤ o(1)C9(∥un∥+ ∥vn∥) + C10

∥(un, vn)∥E

+
C11

∥(un, vn)∥E

∫
Ω

(
(un

+)p1+1 − (un
−)q1+1

)
dx

+
C12

∥(un, vn)∥E

∫
Ω
(vn

+)p2+1dx→ 0

which, by using (3.5) and (3.6), implies that ∥(un, vn)∥E → 0. This gives
rise to a contradiction to the assumtion of {(un, vn)}. We conclude that
{(un, vn)} is bounded.

Lemma 3.2. Assume F satisfies (F1) and (F2) with α = r + 1. If
a < λ1 and c+η < λ1, then the functional I satisfies the (PS)∗c condition
with respect to En.

Proof. By Lemma 3.1, any (PS)∗c sequence {(un, vn)} in E is bounded
and hence {(un, vn)} has a weakly convergent subsequence. That is,
there exist a subsequence {(unj , vnj )} and (u, v) ∈ E, with unj ⇀ u and
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vnj ⇀ v. Since {unj} and {vnj} are bounded, by Remark of Rellich-
Kondrachov compactness theorem [4], unj → u, vnj → v and thus I
satisfies (PS)∗c condition.

3.3. Proof of main theorem

Lemma 3.3. Assume F satisfies (F3). If a < λ1, then there exists
ρ > 0 such that

I(u, 0) ≥ 0 for u ∈ H and ∥u∥ ≤ ρ.

If ∥u∥ = ρ, then I(u, 0) > 0.

Proof. By (F3), for any ε > 0, there exists ρ1 > 0 such that

∥u∥ < ρ1 ⇒ |F (x, u, 0)| ≤ ε|u|2.

Then ∣∣∣∣∫
Ω
F (x, u, 0)dx

∣∣∣∣ ≤ ∫
Ω
|F (x, u, 0)|dx ≤

∫
Ω
ε|u|2dx ≤ ε

λ1
∥u∥2.

By the continuous embedding of H in Lp1+1, we get∫
Ω

(u+)p1+1

p1 + 1
dx ≤

∫
Ω

|u|p1+1

p1 + 1
dx ≤ β∥u∥p1+1,

where β is a positive constant.
And hence

I(u, 0) =
1

2

∫
Ω
|∇u|2dx− a

2

∫
Ω
u2dx− 1

p1 + 1

∫
Ω
(u+)p1+1dx

+
1

q1 + 1

∫
Ω
(u−)q1+1dx−

∫
Ω
F (x, u, 0)dx

≥ 1

2
∥u∥2 − a

2λ1
∥u∥2 − β∥u∥p1+1 − ε

λ1
∥u∥2

≥ 1

2

(
1− a+ 2ε

λ1
− 2β(ρ1)

p1−1

)
∥u∥2 ≥ 0

which gives the result for sufficiently small ε and ρ1. Therefore we can
choose 0 < ρ < ρ1 such that I(u, 0) > 0 for any ∥u∥ = ρ.

Lemma 3.4. Assume F satisfies (F4). If η < λ1, then

sup
H2

I ≤ 0.
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Proof. We know that∫
Ω
(v−)2dx ≤

∫
Ω
v2dx ≤ 1

λ1
∥v∥2

for any v ∈ H. By (F4) one has

I(0, v) = −1

2

∫
Ω
|∇v|2dx− c

2

∫
Ω
v2dx− 1

p2 + 1

∫
Ω
(v+)p2+1dx

+
η

2

∫
Ω
(v−)2dx−

∫
Ω
F (x, 0, v)dx

≤ η − λ1
2λ1

∥v∥2 ≤ 0.

Hence the proof is complete.

Furthermore define, for some R

WR := {(ke1, v)|v ∈ H, k > 0, ∥(ke1, v)∥E = R}.

Lemma 3.5. Assume F satisfies (F1). If a, b and c are positive and
η < λ1, then there exists an R > 0 such that

sup
WR

I < 0.

Proof. In the following we denote other positive constants by C1, C2

etc. Remark 1.1 implies that

I(ke1, v) =
(λ1 − a)k2

2
− 1

2
∥v∥2 − bk

∫
Ω
e1vdx− c

2

∫
Ω
v2dx

− 1

p1 + 1

∫
Ω
(ke1)

p1+1dx− 1

p2 + 1

∫
Ω
(v+)p2+1dx

+
η

2

∫
Ω
(v−)2dx−

∫
Ω
F (x, ke1, v)dx

≤ (λ1 − a)k2

2
− 1

2
∥v∥2 + η

2

∫
Ω
(v−)2dx−

∫
Ω
F (x, ke1, v)dx

≤ (λ1 − a)k2

2
+
η − λ1
2λ1

∥v∥2 − b1

∫
Ω
(|u|α + |βe1|α)dx+ C1

≤ −C2k
α + C3 +

(λ1 − a)k2

2
+
η − λ1
2λ1

∥v∥2,

for any v ∈ H and any constant k > 0. Since α > 2 and η < λ1,
I(ke1, v) → −∞ for k → ∞ or ∥v∥ → ∞. Therefore we can choose
0 < R <∞ such that I(ke1, v) < 0 for any ∥(ke1, v)∥E = R.
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Lemma 3.6. If a < λ1, then

sup
QR(H2,e11)

I < +∞.

Proof. If ∥(ke1, v)∥E ≤ R, then k ≤ R and ∥v∥ ≤ R. Proof of Lemma
3.5 implies that

I(ke1, v) ≤ (λ1 − a)k2

2
− 1

2
∥v∥2 + η

2

∫
Ω
(v−)2dx−

∫
Ω
F (x, ke1, v)dx

≤ (λ1 − a)k2

2
+
η

2

∫
Ω
(v−)2dx

≤ (λ1 − a)k2

2
+

η

2λ1
∥v∥2,

≤
(
(λ1 − a)

2
+

η

2λ1

)
R2 < +∞.

Hence the proof is complete.

Proof of Theorem 1.2. By Lemma 3.3, 3.4, 3.5 and 3.6, there exists
0 < ρ < R such that

sup
∂QR(H2,e11)

I ≤ 0 < inf
∂Bρ(H1)

I,

and
sup

QR(H2,e11)

I < +∞ and inf
Bρ(H1)

I ≥ 0 > −∞.

By Theorem 2.1, I(u, v) has at least two nonzero critical values c1, c2

inf
Bρ(H1)

I ≤ c1 ≤ sup
∂QR(H2,e11)

I < inf
∂Bρ(H1)

I ≤ c2 ≤ sup
QR(H2,e11)

I.

Since sup∂QR(H2,e11)
I ≤ 0 and infBρ(H1) I ≥ 0, c1 = 0. Therefore, (1) has

at least one nontrivial solutions.
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